Congruent Corresponding Chords Theorem

In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

PROOF: **Since this is a biconditional statement, we need to prove BOTH " $p \rightarrow q$ " and " $q \rightarrow p$ "

"q → p" If two chords are congruent in the same circle or two congruent circles, then the corresponding minor arcs are congruent.

Statements	Reasons
$\overline{AB} \cong \overline{CD}$	Given
Say O is the center of the circle. Draw \overline{AO} , \overline{BO} , \overline{CO} and \overline{DO}	Through any two points there is one line
$\overline{AO} \cong \overline{BO} \cong \overline{CO} \cong \overline{DO}$	Radii in the same circle are congruent
$\Delta AOB \cong \Delta COD$	SSS≅
$\angle AOB \cong \angle COD$	CPCTC
$\widehat{AB} \cong \widehat{CD}$	Congruent Central Angles Theorem

"p → q" If two minor arcs are congruent in the same circle or two congruent circles, then their corresponding chords are congruent.

Statements	Reasons
$\widehat{AB} \cong \widehat{CD}$	Given
Say O is the center of the circle. Draw \overline{AO} , \overline{BO} , \overline{CO} and \overline{DO}	Through any two points there is one line
$\overline{AO} \cong \overline{BO} \cong \overline{CO} \cong \overline{DO}$	Radii in the same circle are congruent
$\angle AOB \cong \angle COD$	Congruent Central Angles Theorem
$\Delta AOB \cong \Delta COD$	SAS≅
$\overline{AB} \cong \overline{CD}$	CPCTC